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Dimension-Reduced Modeling of Spatio-Temporal
Processes

Jenný BRYNJARSDÓTTIR and L. Mark BERLINER

The field of spatial and spatio-temporal statistics is increasingly faced with the challenge of very large datasets. The classical approach
to spatial and spatio-temporal modeling is very computationally demanding when datasets are large, which has led to interest in methods
that use dimension-reduction techniques. In this article, we focus on modeling of two spatio-temporal processes where the primary goal is
to predict one process from the other and where datasets for both processes are large. We outline a general dimension-reduced Bayesian
hierarchical modeling approach where spatial structures of both processes are modeled in terms of a low number of basis vectors, hence
reducing the spatial dimension of the problem. Temporal evolution of the processes and their dependence is then modeled through the
coefficients of the basis vectors. We present a new method of obtaining data-dependent basis vectors, which is geared toward the goal of
predicting one process from the other. We apply these methods to a statistical downscaling example, where surface temperatures on a coarse
grid over Antarctica are downscaled onto a finer grid. Supplementary materials for this article are available online.
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1. INTRODUCTION

Challenges associated with the treatment of massive datasets
are subjects of intense research. Among these challenges is the
development of predictive analyses based on spatio-temporally20
distributed data. Our focus in this article is the use of one spatio-
temporal process to predict another. The challenge of predicting
a high-dimensional response from a high-dimensional predic-
tor arises in many disciplines. For example, climate scientists
often study interconnected processes using massive datasets de-25
rived by remote sensing and computer modeling. A primary
subject in neuroscience is the response of the brain, observed by
modern scanning methods, to sensory inputs (Ravikumar et al.
2009). Development of models that predict various biological re-
sponses to genomic information and other explanatory variables30
holds promise for understanding a variety of biological systems
(Duarte et al. 2007; Richardson, Bottolo, and Rosenthal 2010).
Social and behaviorial scientists often seek predictive models of
behavior in response to inputs (Lazer et al. 2009). A recent exam-
ple of parameter calibration in space weather physics (Kleiber35
et al. 2013) required a predictive model for high-dimensional
fields of computer model outputs.

Spatio-temporal analysis has received substantial attention;
Cressie and Wikle (2011) provided an authoritative discussion
and numerous references. In this article, we add to this literature40
by exploring and illustrating a class of dimension-reduction
methods in combination with Bayesian hierarchical dynamical
modeling for space-time prediction.

Jenný Brynjarsdóttir is Assistant Professor in the Department of Mathemat-
ics, Applied Mathematics and Statistics at Case Western Reserve University,
Cleveland, OH 44106 (E-mail: jenny.brynjarsdottir@case.edu). Mark Berliner
is Professor and Chair of the Department of Statistics, The Ohio State University,
Columbus, OH 43210 (E-mail: mb@stat.osu.edu). This research was supported
by the National Science Foundation under grants ATM-07-24403 and DMS-10-
49064. The authors thank Peter Craigmile, Noel Cressie, and Steve MacEachern
for valuable input during various stages of the development of this work, and the
editor, associate editor, and two anonymous reviewers for insightful and helpful
comments.

Color versions of one or more of the figures in the article can be found online
at www.tandfonline.com/r/jasa.

An abstract statement of the problem is as follows: sup-
pose Y(t) and X (t) are spatio-temporally distributed stochas- 45
tic processes. Conditional on observations of both processes
through a time point τ and observations of X (t) through time
T > τ , we wish to provide a predictive distribution for Y(t)
through time T . We assume discrete time and that both stochas-
tic processes are defined on discrete spatial locations. In such 50
cases, linear dynamical spatio-temporal models (DSTM, e.g.,
Cressie and Wikle 2011) have often been considered. Let Yt (s)
be the value of the Y-process at location s and time t. Set
Yt = (Yt (s1), . . . , Yt (sNY

))′, where s1, . . . , sNY
index NY loca-

tions where the process is observed. (Though we use the lan- 55
guage “spatial” and “location,” the formulations can be applied
more generally.) A linear DSTM for the Yt vectors takes the
form

Yt = MtYt−1 + εYt
, t = 1, . . . , T , (1)

where Mt is an unknown NY × NY transition (or propagator) 60

matrix and εYt

iid∼ N (0, �ε). Normality, independence of errors,
and constant covariance matrix �ε are assumed in this article
for simplicity. As the dimension NY grows, effective modeling
and estimation of Mt and �ε become very difficult and compu-
tationally demanding. 65

Covariate information can be incorporated in (1) in a variety
of ways. For example, Mt may be parameterized to depend on
the X -process; functions of the X -process can be included di-
rectly into the mean of Yt ; the distribution of the errors εYt

may
be modeled to depend on the X -process; and various combina- 70
tions of such notions. In any case, increasing dimensions of both
the Y- and X -processes conspire to make the problem difficult.

A class of dimension-reduced alternatives to the DSTM in
(1) involves two stages. First, each Yt is assumed to have a
representation of the form 75

Yt = Utat + ηY t , t = 1, . . . , τ, (2)
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Introduction

Dimension-reduced modeling – Why?

Increasingly large datasets in spatial and spatio-temporal
statistics

Satellite data, global network of weather stations,
output from climate models, medical imagery etc.

Traditional Spatial Statistics methods are computationally
expensive for large datasets
Dimension-reduced modeling is one way of approaching this
problem

Our focus:
Modeling of two spatio-temporal processes, where

Both datasets are large
The primary goal is to predict one process from the other
(e.g. Statistical Downscaling)

Data-Dependent basis vectors in the spirit of EOFs
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Introduction

Data – 2 meter surface temperatures in the Antarctic

Polar MM5 model output: 14641 locations, 60km resolution
ERA-40 reanalysis data: 2736 locations south of 45◦S
Total number of data points: 2,124,957

Jenný Brynjarsdóttir (CWRU) Dimension Reduced Modeling November 14 , 2014 4 / 39





Statistical Downscaling

Statistical Downscaling

Downscaling
Data on a low-resolution grid used to
infer a process on a high-resolution grid

General circulation models (GCMs)
Global model output on a low-resolution
grid

Regional climate models (RCMs)
Regional model output on a
high-resolution grid
Deterministic downscaling, driven by
GCM output

Statistical downscaling
Statistical model high-resolution process
given the low-resolution data
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Statistical Downscaling

Polar MM5 and ERA-40 data [◦C]

ERA,  Dec ERA,  Jan ERA,  Feb

ERA,  Mar ERA,  Apr ERA,  May

Polar MM5 
 DJF (summer) 1999

Polar MM5 
 MAM (fall) 1999

−70 −60 −50 −40 −30 −20 −10 0 10 20
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Dimension-reduced Bayesian modeling
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Dimension-reduced Bayesian modeling

Spatial Statistics

Observations Y1, . . . ,YN at spatial locations s1, . . . , sN

Typical statistical model:

Y = (Y1, . . . ,YN)T ∼ N(µ,Σ)

Premise: Two Y ’s at close locations are more likely to be similar
than two Y ’s far apart.
Σ modelled via a covariance function Cov(Yi ,Yj) = c(si , sj |θ)

Usually a function only of the distance between si and sj
The point: Given the locations (and θ) we can calculate Σ

The likelihood:

f (µ, θ|y) =
1

(2π)n/2|Σ(θ)|1/2 exp
{
−1

2
(y− µ)T Σ(θ)−1(y− µ)

}
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Dimension-reduced Bayesian modeling

Dimension-reduced spatio-temporal modeling

Add time: Yt = (Yt (s1), . . . ,Yt (sN))′, t = 1, . . . ,T
Linear dynamical spatio-temporal model:

Yt = MYt−1 + εYt , εYt ∼ N(0,Σ)

Problematic if N is large

Dimension-reduced approach:

Yt = Uat + ηt , ηt ∼ N(0,Ση)

at = Hat−1 + ξt , ξt ∼ N(0,Σξ)

Where
U includes K pre-specified basis vectors,
at : KY -dimensional amplitude vector, KY << NY .
Spatio-Temporal Random Effects model of Cressie et al. (2010)
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Dimension-reduced Bayesian modeling

Dimension-reduced spatio-temporal modeling

Yt = Uat + ηt , ηt ∼ N(0,Ση)

at = Hat−1 + ξt , ξt ∼ N(0,Σξ)

Implies a covariance matrix for Y:

Var(Y) = UΣξU ′ + Ση

Get a rich spatial covariance structure without having to specify a
covariance function
Need to estimate H, Σξ and Ση

Need to specify the basis vectors, U. Examples:
EOFs: Wikle & Cressie (1999), Berliner et al. (2000)
Multi-resolution basis functions (wavelets): Wikle et al. (2001),
Kang et al. (2010), Katzfuss & Cressie (2011, 2012)
Process convolution methods: Higdon (1998), Calder (2007)
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Dimension-reduced Bayesian modeling Two spatial processes

Hierarchical modeling of two spatial processes

Y (s) and X (c): spatial processes at locations s and c
Let Y = (Y (s1), . . . ,Y (sNY ))′ and X = (X (c1), . . . ,X (cNX ))′

Hierarchical Bayesian model:[
Y,X|θ

][
θ
]

=
[
Y|X,θ

][
X|θ
] [
θ
]

Natural when we want to predict Y from X
Allows incorporation of knowledge of physical dependence
Avoids specification of the joint covariance model for Y and X
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Dimension-reduced Bayesian modeling Two spatial processes

Dimension-reduced modeling of two spatial processes

A linear model for
[
Y|X,θ

]
:

Y = FX + ε, E(ε) = 0, Cov(ε) = Σε

Problematic if NY and NX are big

We consider using Dimension reduction models for both Y and X:

Y = Ua + ηY and X = Vb + ηX

a and b: KY and KX dimensional unknown vectors of amplitudes
Need to specify U and V

This implies a linear model for the amplitude vectors:

Y = FX + ε ⇒ a = U ′FVb + U ′FηX + U ′ε− U ′ηY

Or: a = Hb + e

H = U ′FV is of dimension KY × KX , much lower dimension than F
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Dimension-reduced Bayesian modeling Two space-time processes

Dimension-reduced model of two space-time
processes

Let Yt = (Yt (s1), . . . ,Yt (sNY ))′ and Xt = (Xt (c1), . . . ,Xt (cNX ))′

Data Model

Yt = Uat + ηtY and
Xt = Vbt + ηtX for t = 1, . . . ,T

Process Model [
at
bt

∣∣∣∣ at−1
bt−1

]
for t = 1, . . . ,T
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Dimension-reduced Bayesian modeling Two space-time processes

Dimension-reduced model of two space-time
processes
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Data Model

Yt = Uat + ηtY and
Xt = Vbt + ηtX for t = 1, . . . ,T

Process Model

at = Hbt + e1t and
bt = Bbt−1 + e2t for t = 1, . . . ,T
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Dimension-reduced Bayesian modeling MSE of dimension reduced predictors

MSE of dimension reduced predictors

Dimension-reduced predictors may be sub-optimal
The optimal predictor in terms of MSE is E(Y|X):

E
(
||Y− h(X)||2

)
≥ E

(
||Y− E(Y|X)||2

)
A predictor under the dimension-reduced hierarchical model:

E(Y|b) = E
(
E(Y|a,b)|b

)
= E

(
Ua|b

)

We can show:

E
(
||Y− E(Ua|b)||2

)
= Ea,η,b

(
||Ua + ηY − E(Ua|b)||2

)
= E

(
||a− E(a|b)||2

)
+

NY∑
i=1

Var(ηYi)

⇒ Need good prediction of the a amplitudes
⇒ Need good dimension-reduced representation of Y (U)
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Data-dependent basis vectors
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Data-dependent basis vectors

EOFs, MCA, CCA
– Popular methods in climate science

One climate field:
Empirical Orthogonal Functions (EOFs) = Principal components
Used to study “modes of variation”

Two climate fields:
Canonical Correlation Analysis (CCA)
Maximum Covariance Analysis (MCA), also known as
“SVD-Analysis”
Have also been used for downscaling, e.g. van Storch et al. (1993)
and Widman et al. (2003).
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Data-dependent basis vectors Empirical Orthogonal Functions (EOFs)

Empirical Orthogonal Functions (EOFs)

Y: NY -dimensional random vector, mean 0, covariance ΣY

EOFs
Linear combinations (principal components)

A1 = u′1Y, A2 = u′2Y, . . . , ANY = u′NY
Y

where Var(Ai) is maximized subject to being uncorrelated with the
first i − 1 principal components
and EOF patterns have unit length, u′iui = 1 for all i

Solution: Spectral decomposition ΣY = UΛU ′
Dimension reduction model: Y = Ua + ηY
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Data-dependent basis vectors Maximum covariance analysis (MCA)

Maximum covariance analysis (MCA) = “SVD analysis”

Y and X: NY and NX dimensional random vectors

MCA

A1 = ũ′1Y and B1 = ṽ′1X
...

...
Ad = ũ′dY and Bd = ṽ′dX (d = min{NY ,NX})

where Cov(Ai ,Bi) are maximized and
the MC patterns ũi and ṽi are orthonormal

Solution: Singular decomposition of the cross-covariance matrix,
ΣYX = ŨD̃Ṽ ′
Dimension reduction models: Y = Ua + ηY and X = Vb + ηX
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Data-dependent basis vectors Maximum Covariance Patterns (MCPs)

Predicting one process (Y) from another (X)

Y = Ua + ηY and X = Vb + ηX

Could use EOFs for each process
Appeal: Good representation of each individual field
Concern: May not have a strong relationship between amplitudes
a and b

Could use MC patterns (or CCA)
Appeal: First few pairs of patterns capture most of the
cross-covariance structure (amplitudes have high covariance)
Concern: No guaranty that the patterns give a good
representation of each individual field
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Data-dependent basis vectors Maximum Covariance Patterns (MCPs)

Predicting one process (Y) from another (X)

Dimension reduction:

Y = Ua + ηY and X = Vb + ηX

Model for amplitudes:
a = Hb + e

We want U to give a good representation of Y.
E.g: Use EOFs that capture a high proportion of the total variance
of Y.

We want b to be a good predictor for a
Given basis vectors u1, . . . ,uKY (e.g. EOFs),
we want to find NX -dimensional vectors, v1, . . . ,vKY , so that

Cov(Ak ,Bk ) = Cov(u′kY,v′kX)

is maximized for each k = 1, . . . ,KY
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Data-dependent basis vectors Maximum Covariance Patterns (MCPs)

Maximum Covariance Patterns

Maximum Covariance Patterns (MCPs)
The vectors

vk =
ΣXY uk

||ΣXY uk ||
k = 1, . . . ,KY

maximize Cov(u′kY,v′kX) for each k
We call the vk vectors Maximum Covariance Patterns (MCPs)

Sample MCPs: Replace ΣXY with SXY

Proposed basis vectors:
Use the K first EOFs, u1,u2, . . . ,uK , of the Y field as basis vectors
for U
Use the K MCPs, v1,v2, . . . ,vK , as basis vectors for V
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Data-dependent basis vectors Maximum Covariance Patterns (MCPs)

Proportion of total variance explained

Y and X: NY and NX dimensional random vectors
u and v: NY and NX dimensional known vectors
Let A = u′Y and B = v′X

Proportion of total variance explained by a basis vector u:

Var(A)

tr(ΣYY )

We define the proportion of the total variance in Y that is explained by
v through u as

pu(v) =
Var(A)

tr(ΣYY )
Cor(A,B)2 =

Cov(A,B)2/Var(B)

tr(ΣYY )
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Data-dependent basis vectors Maximum Covariance Patterns (MCPs)

Proportion of total variance explained

Theorem
Y and X: NY and NX dimensional random vectors
u: NY dimensional known vector
v: MCP of X with respect to u
e: The first EOF of X. Then

pu(v) ≥ pu(e)

I.e. When explaining the variability in Y it is better to use MCPs as
basis vectors for X rather than the EOFs.

Jenný Brynjarsdóttir (CWRU) Dimension Reduced Modeling November 14 , 2014 23 / 39



Data-dependent basis vectors Orthogonal Maximum Covariance Patterns (OMCPs)

Orthogonal Maximum Covariance Patterns (OMCPs)

Potential Problem: MCPs are not necessarily linearly independent

vk =
ΣXY uk

||ΣXY uk ||
k = 1, . . . ,KY

Orthogonal Maximum Covariance Patterns (OMCPs)

OMCPs are vectors vk that maximize Cov(u′kY,v′kX) with the
constraint that v1, . . . ,vK are orthogonal

Same as Gram-Schmidt orthogonalization of the MCPs

OMCPs eliminate concerns about MCPs possibly being linearly
dependent
Orthonormal basis vectors are computationally convenient for
dimension-reduced modeling
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Statistical Downscaling of temperatures of the Antarctic
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Statistical Downscaling of temperatures of the Antarctic Polar MM5 and ERA-40 data

Polar MM5 – Antarctic hindcast project

Polar MM5 model output
PSU/NCAR Fifth-generation Mesoscale Model (MM5)
Modified for polar regions by the Byrd Polar Research Center,
OSU (Monaghan et al. 2006)
Antarctic hindcast project:

Polar MM5 used to model climate over Antarctica 1979-2001
Data used here: Seasonal mean 2-meter temperature fields

ERA-40 reanalysis data
ECMWF re-analysis project (http://data-portal.ecmwf.int/)
Used for initial and boundary conditions for the Polar MM5
simulations.
Cover the period from mid-1957 to mid-2002

Data used here: Monthly averages of daily means of 2-meter
temperatures
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Statistical Downscaling of temperatures of the Antarctic Polar MM5 and ERA-40 data

Polar MM5 and ERA-40 surface temperature data

Polar MM5 model output
Regional climate model,
seasonal 2-meter temp.
14641 spatial locations
(blue grid)

ERA-40 data from ECMWF
Data product, monthly
2-meter temperatures
2736 spatial locations south
of 45◦S (grey grid)

ERA,  Dec ERA,  Jan ERA,  Feb

ERA,  Mar ERA,  Apr ERA,  May

Polar MM5 
 DJF (summer) 1999

Polar MM5 
 MAM (fall) 1999

−70 −60 −50 −40 −30 −20 −10 0 10 20
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Statistical Downscaling of temperatures of the Antarctic Polar MM5 and ERA-40 data

Centered Polar MM5 and ERA-40 data

Construct EOFs of centered
Polar MM5 data

Separately for each
season

Then construct OMCPs of
centered ERA-40 data

For every EOF we obtain
three OMCPs,
→ one for each month of
ERA-40 data
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Statistical Downscaling of temperatures of the Antarctic Polar MM5 and ERA-40 data

Basis Vectors (summer)
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Statistical Downscaling of temperatures of the Antarctic Polar MM5 and ERA-40 data

Basis Vectors
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Chose KY = 4 and KX = 4
First 4 EOFs explain 68% - 82% of total sample variance of Polar
MM5 data
First 4 OMCPs explain 36% - 85% of total sample variance of
ERA-40 data
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Statistical Downscaling of temperatures of the Antarctic Bayesian Hierarchical Model

Bayesian Hierarchical Model

Yl,t : NY -dim. vector of centered Polar MM5 data, season l , year t
Xm,t : NX -dim. vector of centered ERA-40 data, month m, year t

Data Model
For every t , m and l :[

Yl,t |al,t ,Rl
]

= N (Ulal,t ,Rl ) and
[
Xm,t |bm,t ,Sm

]
= N (Vmbm,t ,Sm)

Ul and Vm: first four EOFs and OMCPs for season l and month m

Process Model[
al,t |bml1,t ,bml2,t ,bml3,tHl ,Cl

]
= N

(
Hl

[ bml1,t

bml2,t

bml3,t

]
, Cl

)
Hl =

(
Hml1 Hml2 Hml3

)
, Hm = diag(hm)[

bm,t |bm−1,t ,Bm,Dm
]

= N
(
Bmbm−1,t , Dm

)
and

[
b2,1

]
= N

(
µb,Σb

)
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Statistical Downscaling of temperatures of the Antarctic Bayesian Hierarchical Model

Bayesian Hierarchical Model – Parameter Model

Normal priors for elements of transition matrices Bm and Hm

Inverse-Wishart priors for process-model covariance matrices, Cl
and Dm

Data-model covariances matrices Rl and Sm (Berliner et al. 2000):

Modeled using the next six basis vectors to account for some of the
leftover structure
Each covariance matrix has one unknown scalar with an
Inverse-Gamma prior
Computationally very effective

Obtained samples from the posterior distribution via a Gibbs
Sampler
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Statistical Downscaling of temperatures of the Antarctic Results

Downscaling winter 2001 - fall 2002
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Statistical Downscaling of temperatures of the Antarctic Results

Downscaling winter 2001 - fall 2002
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Statistical Downscaling of temperatures of the Antarctic Results

Downscaling winter 2001 - fall 2002
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Statistical Downscaling of temperatures of the Antarctic Results

Coverage of credible intervals
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Statistical Downscaling of temperatures of the Antarctic Results

Downscaling winter 2001 - fall 2002
Point wise prediction intervals

Obtained samples from the marginal posterior predictive
distribution of Yl,t ,j , for each location j
Percentage of locations where the actual Polar MM5 temperature
data fall within the 50%, 90% and 95% prediction intervals:

Winter 2001 Spring 2001 Summer 2002 Fall 2002
50% Pr. Int. 70.72% 38.19% 52.52% 50.67%
90% Pr. Int. 97.40% 77.58% 89.39% 80.60%
95% Pr. Int. 98.60% 86.45% 94.58% 85.31%
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Conclusions

Conclusions

A dimension reduced modeling approach can be very useful when
faced with large spatial or spatio-temporal datasets
The Orthogonal Maximum Covariance Patters are a promising
choice when the goal is to predict one space-time process from
another
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Polar MM5 and ERA-40 grids

Polar MM5 model output
121× 121 polar
stereographic grid
Model resolution:
60km in each
horizontal direction
14641 spatial locations

ERA-40 reanalysis data
2.5◦ × 2.5◦

latitude-longitude grid
2736 spatial locations
south of 45◦S
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Data model covariance matrices Rl and Sm

Balance modeling the structure of the data with computational
feasibility
Idea from Berliner et al. 2000:

Rl = rl

(
cl INY + ŨlD̃lŨ ′l

)
≡ rlR̃w . (1)

where
Ũl : next few eigen vectors from Ul
D̃l : the corresponding eigenvalues (diagonal
and

cl =

NY∑
k=LY+1

dl,k for l ∈ {1,2,3,4} . (2)

⇒ data model incorporates additional spatial structure beyond
that represented in the leading basis vectors used to specify the
means.
Same approach was used to treat Sm.
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Assessing Conditional Independence Assumptions

We assume that given the EOF amplitudes the Polar MM5
temperatures are independent of the ERA-40 temperatures, i.e.[

Y|a,b,θ,X
]

=
[
Y|a,θ

]
, (3)

If we believe that the EOFs capture most of the structure in the Polar
MM5 temperatures this assumption makes intuitive sense.

Heuristic assessment
Sample correlations between the residuals R = Y− Ua and X (or
between R and X− Vb)
For each season-month combination we have > 150 million such
pairs

Randomly sampled 10,000 pairs of Ri and Xj

“null-density”: sampled 10,000 pairs of 22-dimensional
uncorrelated normal random variables

The same analysis for R and X− Vb gave similar results.
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Assessing Conditional Independence Assumptions
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Comparisons with EOFs only

We claimed that using OMCPs as basis vectors for the X is better
than using their EOFs
Fitted the same model with EOFs for as V instead of OMCPs

Mean square prediction error of the Polar MME temperatures using
OMCP vectors vs. EOF vectors for the ERA-40 temperatures:

Winter 2001 Spring 2001 Summer 2002 Fall 2002
OMCP 0.420 0.947 0.266 1.533
EOF 0.826 0.912 0.275 1.331
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Yearly variations
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